Які є логарифмічні властивості?

Як можна побачити нижче, властивостi десяткового логарифма log x i натурального логарифма ln x однаковi:

Десятковий логарифм:

10loga = a

Натуральний логарифм:

eln a = a

Це стосується всiх логарифмiв iз будь-якою основою.

Правило

Властивостi десяткового логарифма

Перша логарифмiчна властивiсть:

log (ax) = xloga

Друга логарифмiчна властивiсть:

log (a b) = loga + logb

Третя логарифмiчна властивiсть:

log (a b) = loga logb

Правило

Властивостi натурального логарифма

Перша логарифмiчна властивiсть

ln (ax) = x ln a

Друга логарифмiчна властивiсть

ln (a b) = ln a + ln b

Третя логарифмiчна властивiсть

ln (a b) = ln a ln b

Приклад 1

Спрости loga2 + logb2 2 loga

loga2 + logb2 2 loga = 2 loga + 2 logb 2 loga = 2 logb

loga2 + logb2 2 loga = 2 loga + 2 logb 2 loga = 2 logb

Приклад 2

Спрости logab + logb2 loga2b

logab + logb2 loga2b = loga + logb + 2 logb (loga2 + logb) = loga + 3 logb loga2 logb = loga + 2 logb 2 loga = loga + 2 logb

logab + logb2 loga2b = loga + logb + 2 logb (loga2 + logb) = loga + 3 logb loga2 logb = loga + 2 logb 2 loga = loga + 2 logb

Приклад 3

Спрости loga b log2a b3

log a b log 2a b3 = loga logb (log 2a logb3) = loga logb (log 2 + loga 3 logb) = loga logb log 2 loga + 3 logb = 2 logb log 2

log a b log 2a b3 = loga logb (log 2a logb3) = loga logb (log 2 + loga 3 logb) = loga logb log 2 loga + 3 logb = 2 logb log 2

Приклад 4

Спрости log 2x + log 2 log 2 x2 + log 10

log 2x + log 2 log 2 x2 + log 10 = log 2 + logx + log 2 (log 2 logx2) + 1 = 2 log 2 + logx log 2 + logx2 + 1 = log 2 + logx + 2 logx + 1 = log 2 + 3 logx + 1

log 2x + log 2 log 2 x2 + log 10 = log 2 + logx + log 2 (log 2 logx2) + 1 = 2 log 2 + logx log 2 + logx2 + 1 = log 2 + logx + 2 logx + 1 = log 2 + 3 logx + 1

Приклад 5

Застосуй логарифмiчнi властивостi, щоб спростити ln 2x ln (x 2) 4 ln x

= ln 2x ln (x 2 ) 4 ln x = ln 2 + ln x (ln x ln 2) 4 ln x = ln 2 + ln x ln x + ln 2 4 ln x = 2 ln 2 4 ln x

ln 2x ln (x 2 ) 4 ln x = ln 2 + ln x (ln x ln 2) 4 ln x = ln 2 + ln x ln x + ln 2 4 ln x = 2 ln 2 4 ln x

Приклад 6

Застосуй логарифмiчнi властивостi, щоб спростити ln 2x3 ln (3x 2 ) + ln (3x)2

= ln 2x3 ln (3x 2 ) + ln (3x)2 = ln 2 + ln x3 (ln 3x ln 2) + ln 32x2 = ln 2 + 3 ln x (ln 3 + ln x ln 2) + ln 32 + ln x2 = ln 2 + 3 ln x ln 3 ln x + ln 2 + 2 ln 3 + 2 ln x = 2 ln 2 + 4 ln x + ln 3

ln 2x3 ln (3x 2 ) + ln (3x)2 = ln 2 + ln x3 (ln 3x ln 2) + ln 32x2 = ln 2 + 3 ln x (ln 3 + ln x ln 2) + ln 32 + ln x2 = ln 2 + 3 ln x ln 3 ln x + ln 2 + 2 ln 3 + 2 ln x = 2 ln 2 + 4 ln x + ln 3

Бажаєш дізнатися більше?ЗареєструйсяЦе безплатно!